Article 3218

Title of the article

THERMODYNAMIC METHODS OF CAPACITY OF NATURAL COMPOSITES AS THE BASIS
OF BIO-DEPENDABLE MEMBRANES 

Authors

Dyshlyuk Lyubov' Sergeevna, Candidate of biological sciences, head of Scientific and educational center, Kemerovo State University (6 Krasnaya street, Kemerovo, Russia), E-mail: dyshlyuk85@bk.ru
Prosekov Aleksandr Yur'evich, Doctor of engineering sciences, rector, Kemerovo State University (6 Krasnaya Street, Kemerovo, Russia), E-mail: olich.43@mail.ru 

Index UDK

577.11: 60 

DOI

10.21685/2307-9150-2018-2-3 

Abstract

Background. The growth of the ecological problems, connected to the waste utilization led to the necessity of applying biodegradable polymers. The development based on acceptable technologies and formulizations of domestic equivalents of biodegradable polymers for using them in packaging food and pharmaceutical products. This is nowadays relevant all over the world. The aim of the research is to choose the most optimal compositions of the natural saccharides as a basement of the biodegradable
polymers.
Materials and methods. The polymers were studied by thermodynamic methods obtained on the basement of the composition of the natural saccharides which are carrageenan, hydroxypropylmethicellulose and gelose.
Results. The conducted research showed that all obtained solutions demonstrated thermodynamic resistance.
Conclusions. 33 compositions were obtained from the natural polymers. These compositions are for obtaining biodegradable membranes. By the values of thermodynamic characteristics, 13 were selected for further development of the technology of biodegradable packaging materials on their basis. 

Key words

polymers, biodegradablemembranes, carrageenan, gelose, hydroxypropylmethicellulose, energy of Gibbs 

 

 Download PDF

References

1. Polimernye plenki [Polymer membranes]. Ed. E. M. Abdel'-Bari; transl. from Engl. ed. by G. E. Zaikov. Saint-Petersburg: Professiya, 2005, 350 p.
2. Anan'ev V. V., Gubanova M. I., Kirsh I. A. Utilizatsiya i vtorichnaya pererabotka polimernykh materialov [Utilization and recycling of polymeric materials]. Moscow: MGUPB, 2007, 84 p.
3. Balov A., Ashpina O. The Chemical Journal. 2012, no. 3, pp. 48–53.
4. Kuznetsova L. S., Kudryakova G. Kh., Shevchenko E. G., Kuznetsova N. V. Myasnye tekhnologii [Meat technology]. 2006, no. 12, pp. 4–9.
5. Ol'khov A. A., Vlasov S. V., Zaikov G. E. Vse materialy. Entsiklopedicheskiy spravochnik [All materials. Encyclopedic reference]. 2012, no. 4, pp. 34–43.
6. Rogovina S. Z., Grachev A. V., Aleksanyan K. V., Prut E. V. Khimiya rastitel'nogo syr'ya [Chemistry of plant materials]. 2010, no. 4, pp. 45–50.
7. Smirnova E. A. Termodinamika sovmestimosti komponentov i reologicheskie svoystva smesey sinteticheskikh polimerov s polisakharidami: avtoref. dis. kand. khim. nauk [Thermodynamics of compatibility of components and rheological properties of mixtures of son-tetic polymers with polysaccharides: author’s abstract of dissertation to apply for the degree of the candidate of chemical sciences]. Ekaterinburg, 2009, 24 p.
8. Shevchenko V. G. Osnovy fiziki polimernykh kompozitsionnykh materialov [Fundamentals of physics of polymer composite materials]. Moscow: MGU im. M. V. Lomonosova, 2010, 99 p.
9. Rhim J.-W., Park H.-M., Ha C.-S. Progress in polymer science. 2013, vol. 38, iss. 10–11, pp. 1629–1652.
10. Teruo N., Hiraku J., Masaru M. J. Macromol. Sci. B. 2008, no. l, pp. 85–98. 
11. Yates M. R., Barlow C. Y. Resources conservation and recycling. 2013, vol. 78, pp. 54–66. 

 

Дата создания: 07.02.2019 09:50
Дата обновления: 07.02.2019 13:20